Все что нужно знать о груди

Действительно ли гидроэлектростанции являются экологически чистыми? Как работает гидроэлектростанция Ли гэс.

Саяно-Шушенская гидроэлектростанция (СШГЭС) - крупнейшая в России, расположена на реке Енисей, между Красноярским краем и Хакасией. Строительство станции началось в 1963 году. Первый гидроагрегат был запущен в декабре 1978 года. Возведение ГЭС полностью завершилось лишь в 2000-м. Через девять лет на станции произошла авария: тогда вышел из строя гидроагрегат № 2, его выбросило напором воды со своего места. Машинный зал и технические помещения под ним затопило, погибли 75 человек. Как позже установила комиссия, причиной аварии стал износ шпилек крепления крышки турбины. На восстановление и комплексную модернизацию станции компания «Русгидро» потратила 41 миллиард рублей. Сейчас работы практически завершены. The Village выяснил, как работает станция.

Саяно-Шушенская ГЭС

Крупнейшая гидроэлектростанция
в России

год основания : 1963

местоположение : посёлок Черёмушки, Хакасия

число сотрудников : 580 человек






Саяно-Шушенское водохранилище образовано плотиной ГЭС. Его объём составляет 31 кубический километр. Эта плотина является самой высокой в мире арочно-гравитационной плотиной, её высота 245 метров. Длина гребня составляет 1 074 метра, ширина основания - 105 метров.




Из водохранилища вода попадает в водоводы. Каждый водовод имеет диаметр 7,5 метра. В теле плотины установлено около одиннадцати тысяч различных датчиков, контролирующих состояние сооружения.





Из водоводов вода попадает на турбины. Благодаря их вращению, приходят в движение генераторы, которые вырабатывают электроэнергию.



Центральный пульт управления. Мозг станции, откуда всего два человека управляют её работой.





В здании СШГЭС установлены десять гидроагрегатов, мощность каждого - 640 мегаватт. Таким образом, общая мощность станции - 6 400 мегаватт, это самая большая электростанция России. Каждый из десяти гидроагрегатов СШГЭС может пропускать по 350 кубических метров воды в секунду.





Восстановительные работы в машинном зале Саяно-Шушенской ГЭС сейчас завершаются, восстанавливается последний гидроагрегат, ведутся отделочные работы.










Оборудование на нижних отметках машинного зала тоже полностью обновили.


Выходя из турбин, вода ниже по течению бурлит и образует водовороты.




Эксплуатационный водосброс используется во время сильных паводков и может пропускать до 13 тысяч кубометров воды в секунду.



Раньше ток со станции подавался в открытое распределительное устройство, которое сейчас демонтируется.




Теперь его функции выполняет комплектное элегазовое распределительное устройство, расположенное в небольшом закрытом помещении. Оно гораздо более надёжное и безопасное, требует намного меньших затрат на обслуживание. В нём - 19 ячеек, в каждой из которых расположены выключатели, разъединители, заземлители, измерительные трансформаторы тока и напряжения, а также шкаф управления. В узлах ячейки находится элегаз (SF6). Это тяжёлый газ, очень хороший изолятор.



Станция вырабатывает в среднем 23,5 миллиарда киловатт-часов электроэнергии в год. Проектная мощность - 6 400 мегаватт. Основные потребители - Саянский и Хакасский алюминиевый заводы, предприятия Красноярского края и Кемеровской области. Кроме того, станция является регулирующей для всей энергосистемы Сибири.

Фотографии: Иван Гущин

Гидроэлектростанция

Гидроэлектроста́нция (ГЭС) - электростанция , в качестве источника энергии использующая энергию водного потока . Гидроэлектростанции обычно строят на реках , сооружая плотины и водохранилища .

Для эффективного производства электроэнергии на ГЭС необходимы два основных фактора: гарантированная обеспеченность водой круглый год и возможно большие уклоны реки, благоприятствуют гидростроительству каньонобразные виды рельефа.

Особенности

Принцип работы

Принцип работы ГЭС достаточно прост. Цепь гидротехнических сооружений обеспечивает необходимый напор воды, поступающей на лопасти гидротурбины, которая приводит в действие генераторы, вырабатывающие электроэнергию.

Крупнейшие ГЭС в мире

Наименование Мощность,
ГВт
Среднегодовая
выработка, млрд кВт·ч
Собственник География
Три ущелья 22,40 100,00 р. Янцзы , г. Сандоупин, Китай
Итайпу 14,00 100,00 Итайпу-Бинасионал р. Парана , г. Фос-ду-Игуасу , Бразилия /Парагвай
Гури 10,30 40,00 р. Карони , Венесуэла
Черчилл-Фолс 5,43 35,00 Newfoundland and Labrador Hydro р. Черчилл, Канада
Тукуруи 8,30 21,00 Eletrobrás р. Токантинс , Бразилия

Гидроэлектростанции России

По состоянию на 2009 год в России имеется 15 гидроэлектростанций свыше 1000 МВт (действующих, достраиваемых или находящихся в замороженном строительстве), и более сотни гидроэлектростанций меньшей мощности.

Крупнейшие гидроэлектростанции России

Наименование Мощность,
ГВт
Среднегодовая
выработка, млрд кВт·ч
Собственник География
Саяно-Шушенская ГЭС 2,56 (6,40) 23,50 ОАО РусГидро р. Енисей , г. Саяногорск
Красноярская ГЭС 6,00 20,40 ОАО «Красноярская ГЭС» р. Енисей , г. Дивногорск
Братская ГЭС 4,52 22,60 ОАО Иркутскэнерго , РФФИ р. Ангара , г. Братск
Усть-Илимская ГЭС 3,84 21,70 ОАО Иркутскэнерго , РФФИ р. Ангара , г. Усть-Илимск
Богучанская ГЭС 3,00 17,60 ОАО «Богучанская ГЭС», ОАО РусГидро р. Ангара , г. Кодинск
Волжская ГЭС 2,58 12,30 ОАО РусГидро р. Волга , г. Волжский
Жигулёвская ГЭС 2,32 10,50 ОАО РусГидро р. Волга , г. Жигулевск
Бурейская ГЭС 2,01 7,10 ОАО РусГидро р. Бурея , пос. Талакан
Чебоксарская ГЭС 1,40 (0,8) 3,31 (2,2) ОАО РусГидро р. Волга , г. Новочебоксарск
Саратовская ГЭС 1,36 5,7 ОАО РусГидро р. Волга , г. Балаково
Зейская ГЭС 1,33 4,91 ОАО РусГидро р. Зея , г. Зея
Нижнекамская ГЭС 1,25 (0,45) 2,67 (1,8) ОАО «Генерирующая компания», ОАО «Татэнерго » р. Кама , г. Набережные Челны
Загорская ГАЭС 1,20 1,95 ОАО РусГидро р. Кунья , пос. Богородское
Воткинская ГЭС 1,02 2,60 ОАО РусГидро р. Кама , г. Чайковский
Чиркейская ГЭС 1,00 2,47 ОАО РусГидро р. Сулак , п. Дубки

Примечания:

Другие гидроэлектростанции России

Предыстория развития гидростроения в России

В Советский период развития энергетики упор делался на особую роль единого народнохозяйственного плана электрификации страны - ГОЭЛРО , который был утвержден 22 декабря 1920 года. Этот день был объявлен в СССР профессиональным праздником - Днём энергетика . Глава плана, посвященная гидроэнергетике - называлась «Электрификация и водная энергия». В ней указывалось, что гидроэлектростанции могут быть экономически выгодными, главным образом, в случае комплексного использования: для выработки электроэнергии, улучшения условий судоходства или мелиорации . Предполагалось, что в течение 10-15 лет в стране можно соорудить ГЭС общей мощностью 21 254 тыс. лошадиных сил (около 15 млн кВт), в том числе в европейской части России - мощностью 7394, в Туркестане - 3020, в Сибири - 10 840 тыс. л.с. На ближайшие 10 лет намечалось сооружение ГЭС мощностью 950 тыс. кВт, однако в последующем было запланировано сооружение десяти ГЭС общей рабочей мощностью первых очередей 535 тыс. кВт.

Хотя уже за год до этого в 1919 году Совет труда и обороны признал строительства Волховской и Свирской гидростанций объектами, имеющими оборонное значение. В том же году началась подготовка к возведению Волховской ГЭС, первой из гидроэлектростанций возведенных по плану ГОЭЛРО.

Однако и до начала строительства Волховской ГЭС Россия имела достаточно богатый опыт промышленного гидростроительства, в основном, частными компаниями и концессиями . Информация об этих ГЭС, построенных в России за последнее десятилетие 19-го века и первые 20 лет двадцатого столетия достаточно разрознена, противоречива и требует специальных исторических исследований.

Наиболее достоверным считается, что первой гидроэлектростанцией в России была Березовская (Зыряновская) ГЭС, построенная в Рудном Алтае на реке Березовка (приток р. Бухтармы) в 1892 году. Она была четырехтурбинная общей мощностью 200 кВт и предназначалась для обеспечения электричеством шахтного водоотлива из Зыряновского рудника.

На роль первой также претендует Ныгринская ГЭС, которая появилась в Иркутской губернии на реке Ныгри (приток р. Вачи) в 1896 году. Энергетическое оборудование станции состояло из двух турбин с общим горизонтальным валом, вращавшим три динамо-машины мощностью по 100 кВт. Первичное напряжение преобразовывалось четырьмя трансформаторами трехфазного тока до 10 кВ и передавалось по двум высоковольтным линиям на соседние прииски. Это были первые в России высоковольтные ЛЭП. Одну линию (длиной 9 км) проложили через гольцы к прииску Негаданному, другую (14 км) - вверх по долине Ныгри до устья ключа Сухой Лог, где в те годы действовал прииск Ивановский. На приисках напряжение трансформировалось до 220 В. Благодаря электроэнергии Ныгринской ГЭС в шахтах установили электрические подъемники. Кроме того, электрифицировали приисковую железную дорогу, служившую для вывоза отработанной породы, которая стала первой в России электрифицированной железной дорогой.

Преимущества

  • использование возобновляемой энергии.
  • очень дешевая электроэнергия.
  • работа не сопровождается вредными выбросами в атмосферу.
  • быстрый (относительно ТЭЦ/ТЭС) выход на режим выдачи рабочей мощности после включения станции.

Недостатки

  • затопление пахотных земель
  • строительство ведется только там, где есть большие запасы энергии воды
  • на горных реках опасны из-за высокой сейсмичности районов
  • сокращенные и нерегулируемые попуски воды из водохранилищ по 10-15 дней (вплоть до их отсутствия), приводят к перестройке уникальных пойменных экосистем по всему руслу рек, как следствие, загрязнение рек, сокращение трофических цепей, снижение численности рыб, элиминация беспозвоночных водных животных, повышение агрессивности компонентов гнуса (мошки) из-за недоедания на личиночных стадиях, исчезновение мест гнездования многих видов перелетных птиц, недостаточное увлажнение пойменной почвы, негативные растительные сукцессии (обеднение фитомассы), сокращение потока биогенных веществ в океаны.

Крупнейшие аварии и происшествия

Примечания

См. также

Ссылки

  • Карта крупнейших ГЭС России (GIF, данные 2003 года)

Застройщики сейчас активно популяризируют малые ГЭС, для того, чтобы получить разрешения у местных общин на их постройку. Но экологический вред плотин настолько велик, а производительность гидроэнергетики настолько низкая, что все это похоже скорее на бизнес девяностых. Давайте рассмотрим несколько мифов связанных с малыми гидроэлектростанциями.



Миф 1. Малые ГЭС - помогут достичь энергонезависимости.

Этот миф сформировался на основании изучений гидроэнергетического потенциала малых рек, без учета экологических, социально-экономических, законодательных и других ограничений и рисков, которые влияют на то, какую часть этого потенциала можно использовать без вреда для природы, местных хозяйств, без нарушения законов и международных правовых актов, без учета рисков связанных с гидроэнергетикой в целом.
На самом деле все значительно сложнее.

Если говорить об энергонезависимости целой страны. То в Украине, например, большие и средние ГЭС составляют только 7,88% (9 обьектов) от общего обьема поставляемой энергии. Малые ГЭС составляют всего - 0,16% (80 обьектов).

При чем обьемы производства электроэнергии в Украине намного превышает потребности населения и активно экспортируется. И наращивать эти обьемы в масштабах страны перекрывая все реки малыми греблями и плотинами это по сути вредительство, с целью обогащения.

Миф 2. Малые ГЭС дают дешевую экологически чистую энергию, которая поможет улучшить энергообеспеченность отдаленных общин.

Стоимость электроэнергии малых ГЭС абсолютно неконкурентноспособна по сравнению с другими видами производимой энергии. Даже с учетом «зеленых тарифов», прибыль от малых ГЭС обеспечивается только наличием схем обязательного выкупа производимой энергии.

Это не говоря уже об экологичности самой постройки малых ГЭС, которые, как правило, сопровождаются грубыми нарушения всех экологических норм, игнорированием законов и давлением на местные общины.

Миф 3. Малых ГЭС планируется немного и решения об их постройке касается только некоторых общин.

От инвесторов малых ГЭС очень часто можно услышать, что ни о каких сотнях малых ГЭС речь не идет, ведь нет столько мест для их постройки и все это только планы, которые вряд ли будут когда-то воплощены в жизнь.

На самом деле таких проектов тысячи. И каждый раз местные активисты сталкиваются со случаями, когда органы местного самоуправления тайком от общин выдают разрешения на постройки малых ГЭС застройщикам. И местная община узнает о постройке плотины только когда тяжелая техника заходит в русло реки и начинает разрушать водоемы.

Практически каждая речка с более-менее значительным перепадом высот и минимальным наполнением воды становится жертвой горе-бизнесменов. Преимущество отдается горным частям рек, а также малым рекам.

Причина неочевидна, она определяется кинетической энергией воды. Просто большим перепадом воды можно достигнуть нужного преобразования механической энергии в электрическую, а расходы в постройке малых ГЭС в верховьях рек значительно ниже чем в низовье, где русло всегда шире.

Миф 4. ГЭС не несет угрозы окружающей среде, не будет иметь негативного влияния для населения и общин.

На самом деле ГЭС наносит огромный вред окружающий среде на всех этапах ее существования. Особо опасным является постройка одновременно сотен малых ГЭС без учета их кумулятивного эффекта.

Миф 5. Малая гидроэнергетика - это передовой мировой опыт. Она соответствует самым безопасным для природы мировым образцам.

На самом деле, основным технологиям, которые используются в малых ГЭС уже боле ста лет. А большинство ГЭС построено там, где их вообще не должно быть через экологические ограничения.
Миф 6. Малые ГЭС всегда лучше для окружающей среды, чем большие.

Долгое время считалось, что малые ГЭС намного безопасней чем крупные. Но когда исследователи сравнили потери суходола и прибрежных поселений в расчете на 1МВт произведенной электроэнергии, то оказалось, что потери территорий экосистем от малых ГЭС могут в сотни раз превышать потери от больших ГЭС в расчете на 1МВт.

Также малые ГЭС вызывают большую фрагменитацию экосистем, ухудшают качество воды и влияют на гидрологию рек и их бассейнов.

Миф 7. Малые ГЭС будут защищать от паводков и наводнений.

На самом деле, нормальный режим работы малых ГЭС несовместимый с противопаводковой защитой.

Последние исследования показывают, что лучшей защитой от наводнений и паводков являются не дорогостоящие инженерные сооружения, а естественные речные поймы и снесение всех инженерных сооружений (плотин, дамб и т.д.), которые перекрывают русло реки и сужают пойму, создают помехи свободному ходу водных потоков.

Миф 8. Малые ГЭС не опаснее водяных мельниц

Часто этот факт, преподают как аксиому. Но это далеко не так. Малые ГЭС намного опаснее, чем водяные мельницы. Основные отличия кроются в специфике работы этих сооружений.

Водяные мельницы работают нерегулярно и часто для их запуска достаточно погрузить колесо в воду, без перекрытия реки плотиной. Кроме этого эти плотины были значительно меньше, чем плотины малых ГЭС и при паводках они полностью затапливались не создавая препятствий для миграции рыбы. Кстати, особенности конструкции этих плотин не создавали препятствий для миграции мальков вниз по течению.

Малые ГЭС - капитальные сооружения, которые работают максимальное количество дней в году. Постоянная работа таких дамб приводит к тому, что в период нереста и миграции риб, молодая рыба не способна преодолеть плотину и гибнет в турбинах. А часто в результате работы турбин происходит высушивание русла реки, что приводит к разрушению местной экосистемы.

Миф 9. Малые ГЭС принесут благополучие общинам, сопутствуют развитию туризму и рекреации

На самом деле, малые ГЭС делают невозможным некоторые виды туризма и рекреации, в частности сплавный и зеленый туризм.

Кроме того, все поступления в местный бюджет и выплаты, которые инвесторы обещают местным общинам, это просто подкуп обещаниями. Малые ГЭС создаются только с одной целью, выкачивание компенсаций из госбюджета в частные карманы.

Миф 10. Малые ГЭС уменьшают парниковых газов и препятствуют изменению климата.

Еще одно утверждение, которые построено на неполноте всех собранных аргументов.
Дело в том, что при строительстве ГЭС, как правило создается водохранилище, а в момент его наполнения увеличиваются выбросы другого газа - метана, который имеет парниковый потенциал в 20 раз выше, чем СО2. Это обусловлено процессами разложения органических веществ, например растений, в условиях затопления водохранилища.

Тем более для запуска ГЭС нужна электроэнергия с ТЭС, которая работает на ископаемом топливе. А электроэнергия, вырабатываемая малыми ГЭС выкупается вынуждено и по завышенным тарифам.

Миф 11. Экологи критикуют не предлагая альтернативы.

На самом деле экологи предлагают целый ряд альтернатив, которые позволяют повышать энергетическую безопасность, благополучие местных жителей и сохранять природу.

Одним из самых перспективных направлений является энергосбережение, которое может уменьшить энергии страны в 2 раза уже к 2030 году.

Возможным является развитие бесплотинных ГЭС, которые не забирают русло в трубы, а устанавливаются в потоке. Но для бизнеса они не интересны, так как вырабатывают слишком мало энергии, достаточной только для обеспечения частного домохозяйства.
Их можно устанавливать достаточно много, без вреда для окружающей среды и такие ГЭС способны обеспечивать энергонезависимость небольших отдаленных общин.

Как можно остановить развития гидроэнергетики и прекратить уничтожение окружающей среды

Единственный путь - это просвещение местных общин и защита местных рек во имя нашего общего будущего. От делков из 90-х можно защитится только реальными уверенными действиями на месте.

Кстати эта борьба идет не только у нас. В США (штат Вашингтон) на реке Евла недавно были снесены две плотины высотой 33 и 64 метра, которые 102 года перекрывали реку и миграционные пути рыбы. Это снос, который является крупнейшим сносом плотины по экологическим причинам в истории, произошел благодаря борьбе местных жителей и экологов - защитников рек. реки и рыбы оказались, в конце концов, важнее и для местной общины, и для государства.

Общий принцип работы гидроэлектростанции известен, наверное, всем. Вода, переходя из верхнего бьефа в нижний, вращает колесо турбины. От турбины приводится в движение генератор, который собственно и производит электричество. Но все самое интересное – в подробностях.

Кстати, для того чтобы получить 1 квт-ч электрической энергии, требуется спуск 14 тонн воды с высоты 27 м.

В отличие, например, от тепловых станций, устроенных совершенно однотипно, каждая гидроэлектростанция устроена со своими особенностями. То есть, не существует некоей однотипной ГЭС. Они отличаются по расходу и напору воды, обьему водохранилища, по географическим критериям местности: климат, грунт, рельеф, близость моря.

Вот машинный за, вполне обычный, разве что окна искусственные (с подсветкой): зал находится на глубине 76 м внутри скалы.

Это машинный зал первой в СССР подземной гидроэлектростанции, к ней с поверхности земли подведены четыре водовода, имеющие диаметр 6 м.

Для извлечения из зала оборудования при необходимости его замены или ремонта в скале вырублена шахта:

Сбросные сооружения и затворы

Не всегда и не вся вода может использоваться для выработки энергии: часть ее сбрасывается мимо ГЭС. Это бывает необходимо при паводке весной (если отсутствует водохранилище многолетнего регулирования), при ремонте агрегатов, при необходимости холостого сброса воды для пропуска мальков рыб по течению и по другим причинам. На Беломорской ГЭС холостой водосброс – это три затвора.

Вопрос резервирования очень важен, ведь если вовремя не понизить в водохранилище уровень воды, это будет иметь серьезные последствия. Для поднятия и опускания затворов предусмотрены козловые краны и электрические лебедки, есть и ручной привод.

Когда затвор поднят, происходит холостой сброс воды для Беломорского водозабора, который расположен ниже по течению.

При обледенении затвора используется индукционный подогрев: обогрев одного затвора требует 150кВт.

Для этой же цели возможно применение барботажа – пропускание воздуха вдоль затвора из глубины, с помощью шлангов системы сжатого воздуха.

Для гашения кинетической энергии воды при сбросе используются различные способы: столкновение потоков, ступени, водобойные колодцы. Например, на Волховской ГЭС – водобойная плита с гасителями.

О рыбе

Нижнетуломская ГЭС для того, чтобы семга могла подняться вверх по течению на нерест, имеет специальный рыбоход, имитирующий горный ручей. В его конструкции предусмотрены и камни на дне, и зигзагообразные проходы, и места для отдыха рыбы.

В период нереста ближайший к рыбоходу гидроагрегат отключают, чтобы его шум не мешал рыбе найти ручей и плыть в правильном направлении.

Безопасность

В результате аварийного прорыва воды ГЭС может остаться без электричества даже для собственных нужд, поэтому предусматриваются резервные источники: аккумуляторы, аварийные дизель-генераторы.

Еще один компонент системы обеспечения безопасности – аэрационные трубы, которые есть к примеру в верхней части водоводных труб Кондопожской ГЭС.

Аэрационные трубы монтируются для защиты водоводов при образовании в них глубокого вакуума, от которого их стальные стенки могут разорваться. Этот вакуум возникает в ситуации резкого опорожнения водовода после закрытия верхних затворов. По аэрационным же трубам они заполняются воздухом, что предотвращает деформацию.

Остатки водовода 1930-х годов из дерева.

Защитная стенка (в центре кадра) предусмотрена для той ситуации, если водовод все-таки прорвется.

Стенка перенаправит водный поток так, что он обойдет станцию с левой стороны, а не через здание администрации и уйдет в нижний бьеф по выемке.

Контроль и управление

На следующем фото видны турбина, генератор и вал, который их соединяет. Слева виднеется схема гидроагрегата, на которую выведены гидроманометры, которые показывают давление в системе смазки.

Внизу – гидравлические приводы направляющего аппарата.

В машинном зале можно проследить за другими параметрами: уровни воды в бьефах, температура воздуха и воды.

Мнемосхема

Данный гидроагрегат не работает. Мощность и частота вращения ротора равны нулю, закрыт направляющий аппарат.

Вода из спиральной камеры турбины снизу забирается и подается на охладители генератора (охладитель – в центре схемы, он красного цвета, охладители А и Б), а также на смазку подпятника, верхнего (ВГП) и нижнего (НГП) генераторных подшипников. Подшипники смазываются водой, нагреваемая вода отправляется на рыбзавод. Справа – красный бак с маслом – относится к гидравлической системе управления направляющим аппаратом. Также здесь можно видеть уровни и расходы и давления всех жидкостей.

Вибрация

Вибрация очень опасна: к примеру, на Саяно-Шушенской станции гидроагрегат был разрушен именно из-за нее. Точнее, из-за усталостного разрушения шпилек крепления крышки турбины по причине вибраций, которые возникли при переходе гидроагрегата через диапазон «запрещенной зоны».

На центральном пульте управления ГЭС можно увидеть, где эта «запрещенная зона» расположена.

Гидроагрегаты Г1, Г3, Г4 работают. Г2 – остановлен. На черном фоне отображается мощность, вырабатываемая генераторами 38,1/38/38 МВт соответственно. Красные столбики Г3 и Г4 свидетельствуют о работе на полную мощность, в Г1 еще имеется резерв. Красная зона за столбиками – диапазон мощности, при которой нежелательна работа гидроагрегата, при пуске и остановке ее необходимо быстро миновать.

Узнать, какой гидроагрегат не работает можно еще до входа в здание.

Когда противовесы подняты – значит, затворы на соответствующих турбинных водоводах опущены. Активно внедряется удаленное управление. При этом диспетчер должен держать под контролем и учитывать взаимное влияние ГЭС в каскаде, значения уровней воды в водохранилищах, потребности потребителей по электричеству и воде. На основании этих сведений происходит распределение выработки электроэнергии между станциями.

Гидроэлектрические станции для выработки электрической энергии используют энергию падающей воды. Речная вода из-за разности уровней непрерывным потоком перемещается от истока к устью. Если построить такое сооружение как плотина, которая перекроет движение воды реки, то уровень воды перед плотиной будет намного больше чем после нее.

Разность между верхним и нижним уровнем (бьефом) называют напором, или еще могут называть высотой падения. Принцип работы гидроэлектростанции довольно прост – на уровне нижнего бьефа устанавливают турбину и направляют на ее лопатки поток воды с верхнего бьефа. Под действием силы падающего водяного потока турбина начнет вращаться, приводя в движение ротор электрического генератора, с которым связана механически. Мощность гидроэлектростанций напрямую зависит от величины напора, а также от количества воды, которая пройдет через все турбины гидроэлектрической станции. Коэффициент полезного действия (КПД) гидроэлектрических станций значительно выше тепловых и составляет порядка 85%.

По характеру воздвигнутых сооружений гидроэлектростанции разделяют на:

  • Приплотинные – в них напор создается плотиной. Такие сооружения строятся на равнинных реках с небольшим напором. Это связано с тем, что для получения большого напора необходимо создавать водохранилища, которые затопляют значительные территории;

  • Деривационные – значительный напор здесь создается за счет деривационных (обходных) каналов. Гидроэлектростанции такого типа сооружают на горных реках, из-за больших уклонов, которые создают нужный напор при относительно малом расходе воды;

Крупные гидроэлектростанции не работают изолировано от других электрических станций. Наиболее часто применяют работу гидроэлектростанций параллельно с тепловыми, тем самым создавая оптимальный режим потребления топлива ТЭС и гидроэнергии ГЭС. Это процесс заключатся в следующем – зимой, когда уровень воды в реках идет на спад и, соответственно, ГЭС не могут работать на полную мощность, тогда часть нагрузки ГЭС берет на себя ТЭС, а летом, когда уровень воды в реках увеличивается, ГЭС начинают работать на полную мощность, а ТЭС снижает выработок электрической энергии, снижая тем самым потребления органического топлива. Таким образом происходит экономия средств на твердом топливе, что снижает стоимость электрической энергии.

Гидроэлектростанции имеют ряд преимуществ над тепловыми электростанциями, а именно:

  • Процесс выработки электроэнергии на гидроэлектростанции намного проще, чем на тепловой;
  • КПД гидроэлектростанции значительно выше ТЭС;
  • Себестоимость производства электроэнергии на крупных ГЭС примерно в 5 раз ниже чем на ТЭС сравнимой мощности. Это объясняется очень просто – на ГЭС нет необходимости в подвозе органического топлива, а это минус цена за само топливо и транспортировку его. На ГЭС нет топливных устройств и служб, которые необходимо для его обслуживания, что уменьшает количество обслуживающего персонала и затраты на запасные части и техническое обслуживание.

Главным недостатком ГЭС является их длительное сооружения и очень высокая стоимость.

Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!